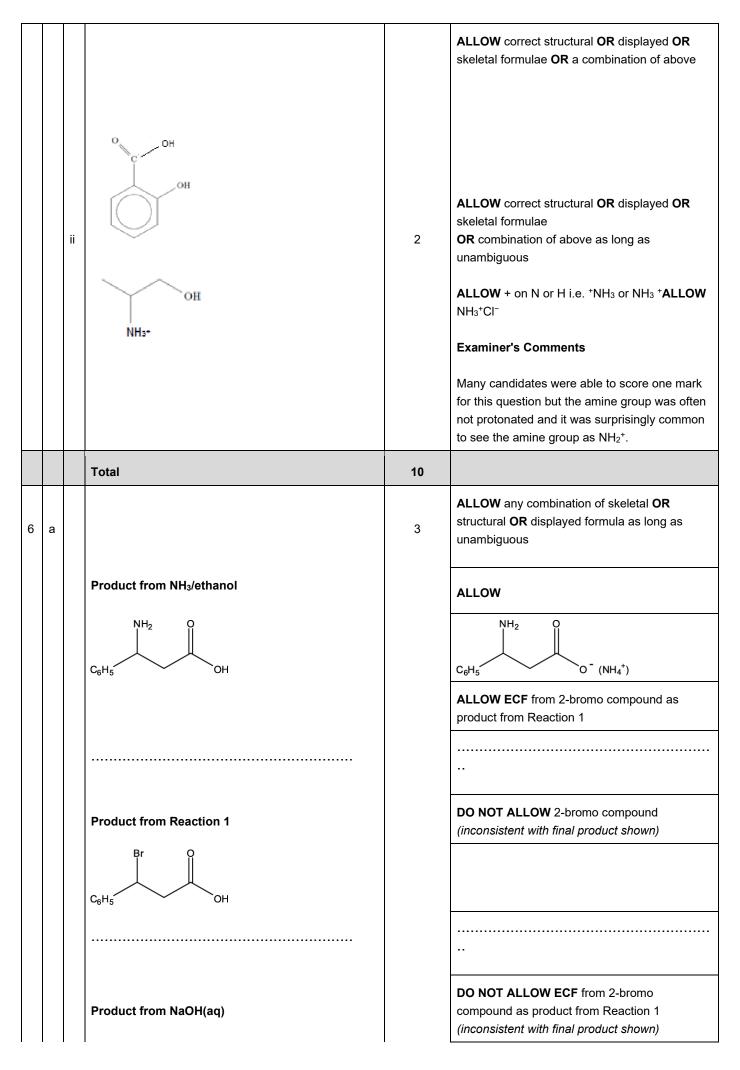
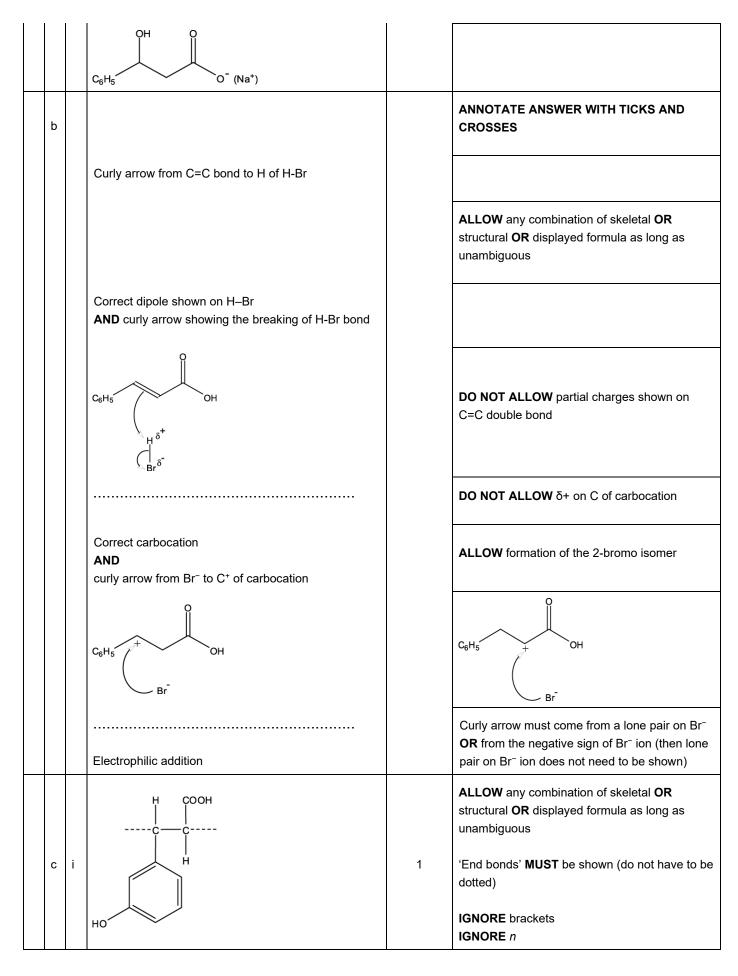

Mark scheme - Amines




				1
				IGNORE references to photodegradable Examiner Comments The most common mark for this question was two out of the three marks available, with candidates giving a correct structure of the polymer but failing to express that the polymer was biodegradable due the ability of the ester functional group to undergo hydrolysis.
		Total	11	
3	i	Bromination: Br ₂ AND A/Br ₃ /FeBr ₃ /Fe \checkmark Intermediate $\stackrel{NO_2}{\longrightarrow}$ Reduction: Sn AND (concentrated) HC/ \checkmark	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any suitable halogen carrier catalyst ALLOW Kekulé structure IGNORE names (question asks for formulae) IGNORE reaction conditions even if incorrect IGNORE 'dilute' for HC/ IGNORE 'dilute' for HC/ IGNORE H2 IGNORE NaOH if seen as a reagent to convert nitro group into amine e.g 'Sn/(concentrated) HC/ then NaOH' scores the mark Examiner Comments Candidates were able, in the main, to provide the reagents for bromination and reduction. The structure of the intermediate compound in the preparation of 3-bromophenylamine proved to be straightforward, however common errors involved the omission of the halogen carrier catalyst for bromination or stating names rather than formulae as indicated in the question.
	ij	NH ₂ is 2,4 directing \checkmark Products (1 mark for each): $\stackrel{NH_2}{\qquad \qquad $	3	 IGNORE references to electron donating/withdrawing groups ALLOW –NH₂ activates the ring causing the new group to join at positions 2 and 4. ALLOW ortho and para directing for 2,4 directing IGNORE 6-directing ALLOW Kekulé structure IGNORE names Examiner Comments The most able candidates completed this question with a clear statement that the

					-NH ₂ group was 2,4 directing and provided two clearly drawn structures of 2- bromophenylamine and 4-bromophenylamine. The most common errors observed included drawing two structures that were identical and explaining the two structures in terms of electron donation from the -NH ₂ without any indication of positioning. Candidates using the terms ortho and para directing were awarded full marks for their answers.
			Total	6	
4			Reagents for first stage NaBr/H ₂ SO ₄ \checkmark Compound H $Br \qquad \qquad$	3	ALLOW any suitable halide salt/sulfuric acid combination ALLOW HC/ OR HBr OR HI ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Note: the halogen in compound H can be C/, Br or I, but must be consistent with halide salt used
			Total	3	
5	а	i	$\begin{array}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	3	One mark for each correct row ALLOW δ values as a range or a value within the specified range. ALLOW δ values +/- 0.2 ppm. ALLOW a response that implies a splitting into two for a doublet etc. ALLOW sextet/hextet/six (or more than 5) as alternative to multiplet Relative peak area = CH /3H etc. penalise once Examiner's Comments Although it could be argued that this question tested the same skill three times, the full range of marks was awarded and errors were seen in the chemical shift, relative peak area and splitting pattern. Fully correct responses included either a chemical shift value within the range specified on the data sheet or a range that matched the one given on the data sheet.
		ii	<u>M[*] peak at 75</u> (peak 1) CH ₃ CH(NH ₂)CH ₂ OH ⁺ /C ₃ H ₉ NO ⁺ √	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as

		$\frac{\text{Fragment peak at 44}}{\text{CH}_3\text{CH}(\text{NH}_2)^*/\text{C}_2\text{H}_6\text{N}^*} \sqrt{2}$		long as unambiguous
				Positive charge is essential but ALLOW maximum of one mark if both formulae are correct AND neither species has a positive charge Examiner's Comments Although peak 2 was often correct, the species responsible for the M+ peak was often missing a positive charge. Possibly students have learned that the particles become charged as part of the fragmentation process and don't realise that only charged particles can be detected by a mass spectrometer.
b	i	Ethanolic ammonia OR ammonia/NH₃ AND ethanol √	1	ALLOW ammonia in a sealed tube ALLOW dilute ethanolic ammonia/NH ₃ IGNORE heat ALLOW alcohol for ethanol DO NOT ALLOW any reference to water or hydroxide ions Examiner's Comments A well answered question. Some candidates forgot to use a solvent or suggested the use of aqueous ammonia.
	ii	(compound D) H C CH ₂ OH H ₃ C C CH ₂ OH H ₃ C C CH ₂ OH H $H_{3}C$ CH ₂ OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments This question discriminated well. Although there were very few blank pages, many incorrect structures were seen.
С	i	Alcohol AND Amide/peptide √	1	IGNORE phenol IGNORE hydroxyl/hydroxy IGNORE attempts to classify alcohol or amide as primary, secondary or tertiary DO NOT ALLOW hydroxide Examiner's Comments Generally well answered but incorrect functional groups included carbonyl and amine.

6.2.1 Amines

	ï	Ester link Rest of structure	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown (do not have to be dotted)
		Total	10	
7		step 1 = (conc.) H ₂ SO ₄ AND CH ₃ CH ₂ OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
	ii	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
		Total	3	